Home » Évènement » Soutenance de thèse de Benjamin FASQUELLE (équipe ReV)
Chargement Évènements
  • Cet évènement est passé

Soutenance de thèse de Benjamin FASQUELLE (équipe ReV)

10 décembre 2021 @ 10 h 00 min - 12 h 30 min

Benjamin Fasquelle, doctorant au sein de l’équipe ReV, soutiendra sa thèse intitulée « Étude théorique et expérimentale d’architectures innovantes de robots inspirées du cou des oiseaux : conception et commande » / « Theoretical and experimental study of innovative robot architectures inspired by the neck of birds : design and control« 

vendredi 10 décembre 2021 à 10h, dans l’amphi du bât. S, sur le site de Centrale Nantes.

https://univ-nantes-fr.zoom.us/j/97856509685?pwd=dHN5YWpaUFdqWGdmUmFzRTl3OXMxUT09
(ID de réunion : 978 5650 9685 / Code secret : 091340)

Jury :
– Directeur de thèse : Philippe Wenger
– Co-encadrant : Christine Chevallereau
– Rapporteurs : Philippe Poignet (Professeur des Universités, Université Montpellier, LIRMM); Jean-Pierre Merlet (Directeur de Recherche, INRIA, centre Sophia Antipolis)
– Autres membres : Anick Abourachid (Professeur, Muséum National d’Histoire Naturelle, Mecadev) ; Christian Duriez (Directeur de Recherche, Université de Lille, INRIA Lille); Matthieu Furet (Docteur, Professeur agrégé, Université Toulouse 3); Med Amine Laribi (Maître de Conférence, Université de Poitiers, Institut P’)

Résumé : Les systèmes biologiques représentent une grande source d’inspiration pour les roboticiens.
Les systèmes de tenségrité, composés d’éléments rigides et d’éléments en tension, sont particulièrement adaptés pour la bio-inspiration puisque l’on retrouve ces systèmes directement dans divers systèmes biologiques. Dans cette thèse, nous étudions un manipulateur inspiré du cou des oiseaux. Ce manipulateur est un empilement de modules qui possèdent chacun un degré de liberté. Chaque module est un mécanisme de tenségrité composé de quatre barres et deux ressorts. Le manipulateur est actionné à l’aide de câbles, ainsi tous les moteurs se situent à sa base. Le modèle géométrique et le modèle dynamique du manipulateur sont développés, puis une analyse de l’actionnement et de l’espace de travail statique du manipulateur est menée. Un actionnement avec quatre câbles est sélectionné pour un prototype composé de trois modules. Ce prototype n’a pas de mesure directe des orientations des modules, deux méthodes pour calculer ces orientations en fonction des positions moteurs sont donc proposées. Une identification des frottements moteurs et de l’élasticité des câbles est menée afin d’améliorer les performances de la commande du prototype, et d’avoir un simulateur efficace. Trois commandes sont développées et testées sur le prototype : une commande articulaire, une commande dans l’espace des moteurs et une commande dans l’espace opérationnel. Des trajectoires sont ensuite optimisées dans le but de produire des mouvements en minimisant les forces appliquées ou de produire des mouvements à grande vitesse, comme peut le faire le pic lorsqu’il frappe un tronc d’arbre avec son bec. La thèse se termine sur une ouverture vers un manipulateur sous-actionné constitué d’une dizaine de modules.

Mots-clés : tenségrité, bio-inspiration, robotique, robot à câbles, commande

—————————————————————————————————————————————————————————————-
Abstract: Biological systems are a great source of inspiration for roboticists. Tensegrity systems, composed of rigid and tensile elements, are particularly suitable for bio-inspiration since these systems are found directly in various biological systems. In this thesis, we study a manipulator inspired by the neck of birds. This manipulator is a stack of modules that each have one degree of freedom. Each module is a tensegrity mechanism composed of four bars and two springs. The manipulator is operated by cables, so all the motors are located at its base. The geometric model and the dynamic model of the manipulator are developed, then an analysis of the actuation and the static workspace of the manipulator is conducted. An actuation with four cables is selected for a prototype composed of three modules. This prototype has no direct measurement of the modules orientations, so two methods to calculate these orientations according to the motor positions are proposed. An identification of the motor friction and the elasticity of the
cables is carried out in order to improve the performances of the prototype control, and to have an effective simulator. Three controls are developed and tested on the prototype : a joint control, a control in the space of the motors and a control in the operational area. Trajectories are then optimized in order to produce movements by minimizing the applied forces or to produce high speed movements, as the woodpecker can do when it hits a tree trunk with its beak. The thesis ends with an opening towards an underactuated manipulator made of about ten modules.

Keywords: tensegrity, bio-inspiration, robotics, cable robot, control

Détails

Date :
10 décembre 2021
Heure :
10 h 00 min - 12 h 30 min
Organisateur
LS2N

Catégories d’Évènement:
,
Évènement Tags:
, ,

Lieu

ECN
Copyright : LS2N 2017 - Mentions Légales - 
 -