Home » Évènement » Soutenance de thèse de Enrique Alvaro-Mendoza
Chargement Évènements
  • Cet évènement est passé

Soutenance de thèse de Enrique Alvaro-Mendoza

29 novembre 2022 @ 14 h 00 min - 18 h 00 min

Enrique Alvaro-Mendoza, doctorant au sein de l’équipe CODEx, soutiendra sa thèse intitulée :

« Control strategies for permanent magnet synchronous machines without mechanical sensors by sliding modes »

Le mardi 29 novembre 2022, à 14h00, dans l’amphithéâtre S de l’école Centrale, et en visioconférence avec le lien zoom suivant: https://ec-nantes.zoom.us/j/99062893611
ID de réunion : 990 6289 3611
Code secret : GS94&VBv


Jury members:

  • Thesis-director: Malek GHANES (Professeur, École Centrale de Nantes, LS2N);
  • Thesis-co-director: Jesús DE LEÓN MORALES (Professeur, Universidad Autonoma De Nuevo Leon, FIME);
  • Co-supervisor: Mohamed Assaad HAMIDA (Maitre de conférences, École Centrale de Nantes, LS2N) ;
  • Reviewers: Fabrice LOCMENT (Professeur, Université de Technologie de Compiègne, GSU); Michael DEFOORT (Professeur, Université Polytechnique Hauts-de-France, LAMIH);
  • Examiners: Fouad BENKHORIS (Professeur, University of Nantes, IREENA); Laboratory);Philippe MARTIN (Professeur, Ecole des Mines de Paris, CAS); Sandrine MOREAU (Maitre de conférences, Université de Poitiers, LIAS);

This thesis proposes two adaptive sensorless controls based on sliding mode approach for interior permanent magnet synchronous motor (IPMSM). The proposed strategies are composed of an Adaptive High-Order Sliding Mode Observer (AHOSMO) in closed-loop with an Adaptive Super-Twisting Control (ASTWC), where the control and observer gains of the proposed strategy are reparameterized in terms of a single parameter. Then, the main advantage of this strategy is the adaptive laws are easy to implement, avoiding overestimates of gains that increases of chattering, reducing the time to tune the gains, and reducing the damage of the actuators. Furthermore, a strategy for angular position estimation error extraction is proposed. Then, from this information and using a parameter-free virtual system, AHOSMO is designed for estimating the angular position and speed in a wide speed range, where the estimated variables provided by this observer are obtained with greater precision, despite the variations of the parameters, achieving greater robustness. These estimated states are used in the proposed robust control to track a desired reference of speed and direct-axis current.
A stability analysis of the closed-loop system is presented, using a Lyapunov approach. In addition, the proposed strategy is validated through an experimental and simulation setup in order to show its effectiveness.

Keywords: IPMSM, Sensorless control, Adaptive observers, Adaptive controllers, Sliding mode




Date :
29 novembre 2022
Heure :
14 h 00 min - 18 h 00 min

Catégorie d’Évènement:
Évènement Tags:


Centrale Nantes
Copyright : LS2N 2017 - Mentions Légales -