Home » Team publications


Publications  for  the  collection  HAL LS2N-GALLINETTE  for  2020

Total of the publications found : 15


Overview of LS2N-GALLINETTE publications by types
ART_INT
COMM_INT
87

International journals with reviewing committee (ART_INT)

    • [1] G. Jaber. SyTeCi: Automating Contextual Equivalence for Higher-Order Programs with References. In Proceedings of the ACM on Programming Languages ; éd. ACM, 2020, vol. 28.
      https://hal.science/hal-02388621
    • [2] Z. Cheng, M. Tisi, R. Douence. CoqTL: A Coq DSL for Rule-Based Model Transformation. In Software and Systems Modeling ; éd. Springer Verlag, 2020, vol. 19.
      https://hal.science/hal-02333564
    • [3] B. Ahrens, A. Hirschowitz, A. Lafont, M. Maggesi. Reduction Monads and Their Signatures. In Proceedings of the ACM on Programming Languages ; éd. ACM, 2020.
      https://inria.hal.science/hal-02380682
    • [4] M. Sozeau, S. Boulier, Y. Forster, N. Tabareau, T. Winterhalter. Coq Coq Correct! Verification of Type Checking and Erasure for Coq, in Coq. In Proceedings of the ACM on Programming Languages ; éd. ACM, 2020.
      https://hal.science/hal-02380196v2
    • [6] M. Sozeau, A. Anand, S. Boulier, C. Cohen, Y. Forster, F. Kunze, G. Malecha, N. Tabareau, T. Winterhalter. The MetaCoq Project. In Journal of Automated Reasoning ; éd. Springer Verlag, 2020.
      https://inria.hal.science/hal-02167423
    • [7] D. Ara, M. Lucas. The folk model category structure on strict $\omega$-categories is monoidal. In Theory and Applications of Categories ; éd. Mount Allison University, 2020, vol. 35, num. 21.
      https://hal.science/hal-02386617
    • [8] S. Boulier, N. Tabareau. Model structure on the universe of all types in interval type theory. In Mathematical Structures in Computer Science ; éd. Cambridge University Press (CUP), 2020.
      https://inria.hal.science/hal-02966633

International conferences with reviewing committee (COMM_INT)

    • [9] Ã. Miquey. Revisiting the duality of computation: an algebraic analysis of classical realizability models. In CSL 2020 - Conference on Computer Science Logic, janvier 2020, Barcelone, Espagne.
      https://hal.science/hal-02305560v2
    • [10] A. Mörtberg, L. Pujet. Cubical Synthetic Homotopy Theory. In CPP 2020 - 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, janvier 2020, New Orleans, états-Unis.
      https://hal.science/hal-02394145
    • [11] Ã. Miquey, X. Montillet, G. Munch-Maccagnoni. Dependent Type Theory in Polarised Sequent Calculus (abstract). In TYPES 2020 - 26th International Conference on Types for Proofs and Programs, mars 2020, Torino, Italie.
      https://inria.hal.science/hal-02505671
    • [12] R. Affeldt, C. Cohen, M. Kerjean, A. Mahboubi, D. Rouhling, K. Sakaguchi. Competing inheritance paths in dependent type theory: a case study in functional analysis. In IJCAR 2020 - International Joint Conference on Automated Reasoning, juin 2020, Paris, France.
      https://inria.hal.science/hal-02463336v2
    • [13] P. Pédrot. Russian Constructivism in a Prefascist Theory. In LICS 2020 - Thirty-Fifth Annual ACM/IEEE Symposium on Logic in Computer Science, juillet 2020, Saarbrücken, Allemagne.
      https://inria.hal.science/hal-02548315
    • [14] G. Munch-Maccagnoni. Towards better systems programming in OCaml with out-of-heap allocation. In ML Workshop 2020, août 2020, Jersey City, états-Unis.
      https://inria.hal.science/hal-03142386
    • [15] A. Hirschowitz, T. Hirschowitz, A. Lafont. Modules over monads and operational semantics. In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020), 2020, Paris, France.In Zena M. Ariola (éds.), . Schloss Dagstuhl--Leibniz-Zentrum für Informatik, 2020.
      https://hal.science/hal-02338144v3
Copyright : LS2N 2017 - Legal notices - 
 -