Home » Team publications


Publications  for  the  collection  HAL LS2N-GALLINETTE  for  2021

Total of the publications found : 13


Overview of LS2N-GALLINETTE publications by types
ART_INT
COMM_INT
THESE
481

International journals with reviewing committee (ART_INT)

    • [2] N. Tabareau, . Tanter, M. Sozeau. The Marriage of Univalence and Parametricity. In Journal of the ACM (JACM) ; éd. Association for Computing Machinery, 2021, vol. 68, num. 1.
      https://hal.inria.fr/hal-03120580
    • [3] A. Mahboubi, T. Sibut-Pinote. A formal proof of the irrationality of ζ(3). In Logical Methods in Computer Science ; éd. Logical Methods in Computer Science Association, 2021, vol. 17, num. 1.
      https://hal.inria.fr/hal-03517003
    • [4] L. Birkedal, T. Dinsdale-Young, A. Guéneau, G. Jaber, K. Svendsen, N. Tzevelekos. Theorems for free from separation logic specifications. In Proceedings of the ACM on Programming Languages ; éd. ACM, 2021, vol. 5, num. ICFP.
      https://hal.archives-ouvertes.fr/hal-03510684

International conferences with reviewing committee (COMM_INT)

    • [8] G. Jaber, A. Murawski. Compositional relational reasoning via operational game semantics. In LICS 2021 - 36th Annual ACM/IEEE Symposium on Logic in Computer Science, juin 2021, Rome, Italie.
      https://hal.archives-ouvertes.fr/hal-03510294
    • [9] M. Lennon-Bertrand. Complete Bidirectional Typing for the Calculus of Inductive Constructions. In ITP 2021 - 12th International Conference on Interactive Theorem Proving, juin 2021, Rome, Italie.
      https://hal.archives-ouvertes.fr/hal-03139924v2
    • [10] S. Bernard, C. Cohen, A. Mahboubi, P. Strub. Unsolvability of the Quintic Formalized in Dependent Type Theory. In ITP 2021 - 12th International Conference on Interactive Theorem Proving, juin 2021, Rome / Virtual, France.
      https://hal.inria.fr/hal-03136002v4
    • [11] M. Sozeau. Touring the MetaCoq Project (Invited Paper). In LFMTP 2021 - Logical Frameworks and Meta-Languages: Theory and Practice, juillet 2021, Pittsburg, états-Unis.
      https://hal.inria.fr/hal-03516619
    • [12] G. Munch-Maccagnoni. Probabilistic resource limits using StatMemprof. In OCaml 2021- OCaml Users and Developers Workshop, août 2021, Online, France.
      https://hal.inria.fr/hal-03517592

PhD Thesis (THESE)

Copyright : LS2N 2017 - Legal notices - 
 -